Abstract
Abstract
The arrangement of cellulose molecules in natural environment on the nanoscale is still not fully resolved, with longitudinal disorder in cellulose microfibrils (CMF) being one relevant question. Particularly the length of the dislocated cellulose segments in CMFs is still under debate. Using molecular dynamics simulations, we are first investigating the phenomenon of pseudo-recrystallization of dislocated cellulose regions after cleavage of CMFs. Based on our simulations we propose that 3–4 glucose residues bordering to each side of a cellulose nanocrystal are actually reorganizing to a quasi-crystalline state, which are corroborating recent analytical investigations reporting an increase in crystallinity after acid vapor hydrolysis of CMFs. Combining our molecular dynamics simulation results with these analytical data we can estimate the length of the dislocated cellulose segments in CMFs. We propose that, for the investigated sources of biomass (cotton and ramie), the dislocation lengths are between 3.1–5.8 nm equaling to 6–11 glucose residues in the cellulose crystallites.
Graphic abstract
Funder
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献