The effect of ply properties in paperboard converting operations: a way to increase formability

Author:

Lindberg GustavORCID,Kulachenko Artem

Abstract

AbstractThis study addresses the question of how the difference in mechanical properties of the individual layers in a multi-ply commercial paperboard affects the outcome of the tray-forming operation. Two commercially produced paperboards with nearly identical mechanical properties when conventionally tensile tested were considered. These boards are produced on different machines with the same target grammage and density. Despite the similar mechanical properties, their performance in a given tray-forming operation was drastically different, with one of the boards showing an unacceptable failure rate. To investigate the difference seen during converting operations, a detailed multi-ply finite element model was built to simulate the converting operation. The present model considers a critical area of the paperboard known to exhibit failures. To derive the constitutive relations for each ply in the sub-model, both boards were split to single out individual plies which were then tensile tested. Including the properties of individual plies revealed large differences between the boards when it comes to the distribution of the properties in the thickness direction. In particular, the top plies differed to a large extent. This is attributed to the difference in refining energies for the plies. The results from the three-ply sub-model demonstrated the importance of including the multi-ply structure in the analysis. Weakening of the top ply facing the punch by using lower refining energy considerably increased the risk of failure of the entire board. These results suggest that there is room for optimizing the board performance by adjusting the refining energy at the ply level. Graphical abstract

Funder

Treesearch National Platform

SNIC Swedish National Platform for Computing

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3