Effect of ultrasonication on the size distribution and stability of cellulose nanocrystals in suspension: an asymmetrical flow field-flow fractionation study

Author:

Metzger ChristophORCID,Drexel Roland,Meier FlorianORCID,Briesen HeikoORCID

Abstract

AbstractCellulose nanocrystals (CNCs) are bio-based building blocks for sustainable advanced materials with prospective applications in polymer composites, emulsions, electronics, sensors, and biomedical devices. However, their high surface area-to-volume ratio promotes agglomeration, which restrains their performance in size-driven applications, thereby hindering commercial CNC utilization. In this regard, ultrasonication is commonly applied to disperse CNCs in colloidal suspensions; however, ultrasonication methodology is not yet standardized and knowledge of the effects of ultrasound treatments on CNC size distribution is scarce. The major goals of this study were attributed to targeted breakage of CNC agglomerates and clusters by ultrasound. The evolution of particle size distribution and potential de-sulfation by ultrasonication as well as the long-term stability of ultrasonicated CNC suspensions were investigated. Colloidal suspensions of sulfated CNCs were isolated from cotton α-cellulose. Effects of ultrasonication on particle size distribution were determined by asymmetrical flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering and ultraviolet spectroscopy. These results were complemented with off-line dynamic light scattering. High ultrasound energy densities facilitated cumulative dispersion of CNC clusters. Consequently, the mean rod length decreased logarithmically from 178.1 nm at an ultrasound energy input of 2 kJ g−1 CNC to 141.7 nm (− 20%) at 40 kJ g−1 CNC. Likewise, the hydrodynamic diameter of the particle collective decreased logarithmically from 94.5 to 73.5 nm (− 22%) in the same processing window. While the rod length, below which 95 wt% of the CNCs were found, decreased from 306.5 to 231.8 nm (− 24%) from 2 to 40 kJ g−1 CNC, the shape factor of the main particle fraction ranged from 1.0 to 1.1, which indicated a decreasing number of dimers and clusters in the particle collective. In summary, progressing ultrasonication caused a shift of the particle length distribution to shorter particle lengths and simultaneously induced narrowing of the distribution. The suspension’s electrical conductivity concurrently increased, which has been attributed to faster diffusion of smaller particles and exposure of previously obscured surface charges. Colloidal stability, investigated through electrical AF4 and electrophoretic light scattering, was not affected by ultrasonication and, therefore, indicates no de-sulfation by the applied ultrasound treatment. Occurrence of minor CNC agglomeration at low ultrasound energy densities over the course of 6 months suggest the effect was not unmitigatedly permanent.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3