Fractionation of pulp and precipitated CaCO3–pulp composites: effects on sheet properties of selective CaCO3 precipitation onto fiber size fractions

Author:

Laukala TeijaORCID,Backfolk Kaj,Heiskanen Isto

Abstract

Abstract CaCO3-pulp composite was prepared via precipitation of calcium hydroxide in the presence of pulp. In order to investigate the precipitation selectivity and mechanism, the substrate pulps and the obtained composites were fractionated (R30, R100, R200, R400 and a sedimented fraction that passed the 400 mesh wire) using a Bauer-McNett unit. The main fractionation criterion was therefore fiber length. The pulp used was CTMP (chemithermomechanical pulp), yielding a precipitated calcium carbonate-chemithermomechanical pulp (PCC-CTMP) composite with a targeted PCC-to-CTMP ratio of 1:1. The PCC consisted primarily of nano-sized primary particles which formed aggregates and clusters on the fibers. When the fiber morphology, zeta potential and surface charge density of the fractions were determined, a correlation was found between the surface charge density of the CTMP and the ash content of the corresponding PCC-CTMP fractions. This supports the hypothesis that the precipitation on the CTMP fiber is driven by the charge interparticle interaction. The use of refined CTMP furnishes and fractionation of the PCC-CTMP furnishes demonstrates that PCC is preferably fixed on fines and fibrils since it appears at a higher content in the fines fractions. Fiber activation via fiber split, removal of primary wall and surface defibrillation enhanced the affinity of the PCC for the fibrils. The laboratory handsheets prepared from the material demonstrated the importance of controlling the substrate fiber properties for the mineral-fiber composite, e.g. via refining, as differences between the refining levels and fractions were found to lead to differences in both optical properties and bonding. Graphic abstract

Funder

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preparation of chitosan derivative and its application in papermaking;International Journal of Biological Macromolecules;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3