Continuous production of cellulose mixed esters via homogeneous reactive twin-screw extrusion catalyzed by ionic liquid

Author:

Hernandez Stephanie C.,Milotskyi Romain,Takagi Shohei,Ito Elisabeth R. D.,Suzuki Shiori,Wada Naoki,Takahashi Kenji

Abstract

AbstractCellulose mixed esters (CMEs) substituted with two different types of acyl groups are promising polymeric materials with various tunable properties but are arduous to produce. This is because of the insolubility of cellulose in common solvents, and thus, the industrial production of CMEs with desired degrees of substitution (DSs) requires a costly multistep process. To accomplish their facile production, homogeneous reactions have been performed using ionic liquids (ILs) as solvents for cellulose. However, the high viscosity of the cellulose-IL solutions causes insufficient mixing in batch reactors; thereby, favoring low cellulose concentrations with long reaction times (typically hours). Herein, we demonstrate a rapid and scalable production of CMEs by exploiting the excellent shear mixing of a twin-screw extruder as a flow reactor. A co-solvent system comprising an IL, 1-ethyl-3-methylimidazolium acetate, and dimethyl sulfoxide was applied to dissolve cellulose at a high concentration (15 wt.%) via twin-screw extrusion. During continuous extrusion at 80 °C, cellulose reacted with two acyl reagents, isopropenyl acetate (IPAc) and vinyl propionate (VPr) (2.5:0.5, mol/mol), to yield cellulose acetate propionate (CAP) within minutes. The CAP was stably produced during the operation time of 50 min with an average isolated yield of 71%. The DSs of the acetyl and propionyl groups of CAP were 1.77 and 0.50, respectively, corresponding to sufficiently high conversion rates of 70% for IPAc and 100% for VPr.

Funder

the Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3