Drainage of high-consistency fiber-laden aqueous foams

Author:

Koponen Antti I.ORCID,Timofeev Oleg,Jäsberg Ari,Kiiskinen Harri

Abstract

AbstractLightweight lignocellulosic fibrous materials (LLFMs) offer a sustainable and biodegradable alternative in many applications. Enthusiastic interest in these materials has recently grown together with the newly risen interest in foam forming. Foam bubbles restrain fiber flocculation, and foam formed structures have high uniformity. Moreover, the bubbles support the fibrous structure during manufacturing enabling the formation of highly porous structures. Mechanical pressure cannot be applied in the manufacture of LLFMs as the materials would lose their porous structure. Water is therefore typically removed by a combination of drainage and thermal drying. Thermal drying of porous materials has been studied intensively. However, there are only a few studies on the drainage of fiber-laden foams. Thus, in this work, we conducted a systematic analysis of this topic. Our findings show that after drainage a stationary vertical moisture profile similar to that of pure foams is developed. Raising the initial fiber consistency was found to increase the final fiber consistency of the foam until the drainage ceased. Increasing mold height was found to increase the final consistency considerably. Without vacuum and heating, the shrinkage of samples during drainage was only slightly higher than the volume of the drained water. Drainage rate and final consistency increased clearly with increasing vacuum, but simultaneously sample shrinkage increased considerably. The best compromise was obtained with a vacuum of 0.5 kPa, which increased the final consistency by 60% without extra shrinkage. Using warm foam and heating the foam during drainage increased the final consistency considerably, but this also led to significant shrinkage of the sample.

Funder

European Regional Development Fund

Technical Research Centre of Finland

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3