Biosorption of copper using nopal fibres: moolooite formation and magnesium role in the reactive crystallization mechanism

Author:

Carballo-Meilan Ara,Hernández-Francisco Elizabeth,Sosa-Loyde Gustavo,Bonilla-Cruz José,Russell Paul,Ali Zulfiqur,García-García Alejandra,Arizpe-Zapata Alejandro,Longoria-Rodríguez Francisco,Lara-Ceniceros Tania E.,Yin Chun-Yang

Abstract

Abstract In this contribution, we present findings on biosorption of Cu (II) ions using novel alkali-treated nopal fibres. The biosorption data at equilibrium were fitted to several isotherm models and the biosorbent was characterized by XRD and SEM–EDX. The biosorption mechanism was investigated using a holistic approach of pH shifts, apparent colour variations and changes in the concentration of Cu(II) and dissolved hard ions (calcium and magnesium) in the Cu(II) solution. The correlation between the colour, XRD analysis, pH shifts and hard cations released from the biosorbent into the solution suggested the existence of two crystal formations, malachite and moolooite, in what appears to be a microprecipitation mechanism via reactive crystallization. The role of magnesium during the transformation of malachite into moolooite during the copper binding mechanism is analysed. Magnesium cations were released into the solution during malachite growth but were taken up from the solution during the moolooite crystal growth phase. The shift of the molar ratio Mg/Ca was located between the two inflexion points of the crystal growth transition. This specific location at the sorption isotherm was correlated with the colour evolution by a linear discriminant model confirming its association with the polymorphs. Graphic abstract

Funder

British Council Institutional Link

CONACYT

Newcastle University

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3