Low consistency refined ligno-cellulose microfibre: an MFC alternative for high bulk, tear and tensile mechanical pulp papers

Author:

Jahangir Emilia S.ORCID,Olson James A.ORCID

Abstract

AbstractLow consistency (LC) refining of (chemi-)thermomechanical pulp (TMP) provides an energy efficient alternative to high consistency refining for pulp property development. However, the benefit of LC refining is often limited by excessive fibre shortening, lower tear strength and a reduction of bulk caused by the refining process. In this study, microfibres produced by LC refining of TMP and kraft pulp fibres were investigated for their reinforcement potential in high freeness mechanical pulp. Primary pulp at 645 mL Canadian Standard Freeness was LC refined to different energy targets as a baseline for mechanical and optical property development. In contrast, the same primary pulp was reinforced with different microfibre types in ratios that yielded the same specific energies of the baseline LC refined pulp. The study revealed that at equivalent energies, the addition of TMP microfibres to the high freeness primary pulp displayed tensile development identical to the LC refined pulp, with significantly improved tear and bulk. The addition of kraft microfibre to primary pulp produced the highest tensile and tear strength but compromised light scattering. Additionally, all microfibre composites showed improved elongation, as opposed to no notable change in elongation with conventional LC refining. This investigation proposes an alternative, cost-effective approach for developing high bulk, high strength mechanical pulp by limiting the extent of second stage refining and using LC refined microfibres for pulp reinforcement. The high tear–high bulk open construction of the composite paper is likely to benefit boxboard and packaging applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Reference44 articles.

1. Ankerfors M (2015) Microfibrillated cellulose: energy-efficient preparation techniques and applications in paper. Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden

2. Asikainen S (2013) Reinforcing ability of fractionated softwood kraft pulp fibres. Nord Pulp Pap Res J 28(2):290–296

3. Balea A, Sanchez-salvador JL, Monte MC, Merayo N, Negro C, Blanco A (2019) In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules 24(9):1–13

4. Brodin FW, Eriksen Ø (2015) Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties. Nord Pulp Pap Res J 30(3):443–451

5. Chang XF, Olson JA, Beatson RP (2012) A comparison between the effects of ozone and alkaline peroxide treatments on TMP properties and subsequent low consistency refining. BioResources 7(1):99–111

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3