Abstract
Abstract
We report the use of the DBU-CO2 switchable solvent system for the direct electrospinning of cellulose. Two cellulose types were investigated, i.e. microcrystalline cellulose (MCC) and cellulose pulp (CP). The morphologies of the obtained cellulose fibers were studied using scanning electron microscopy and optical microscopy. Results obtained showed that only particles with mean diameter about 1.2 μm could be obtained when MCC was used, even at high concentration (10 wt%). In the case of CP, an optimized concentration of 4 wt% resulted in standing fibers with a mean diameter of about 500nm. In order to improve the spinnability of the cellulose, different concentrations and ratios of PVA in combination with cellulose were investigated. The combination of cellulose (both MCC and CP) resulted in the formation of a unique fiber morphology, characterized by a homogeneous bead-like structure. An in-depth study of the fiber structure was carried out using Raman spectroscopy and showed that both cellulose and PVA were present in the formed beads. Finally, the challenge observed remained a complete removal of the solvents, which are not volatile enough, as well as explore a coagulation collection process for the fiber recovery in order to recover and re-use the employed solvent.
Graphic abstract
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Agarwal S (2016) Electrospinning. A practical guide to nanofibers. De Gruyter, Berlin
2. Carroll CP, Zhmayev E, Kalra V, Joo YL (2008) Nanofibers from electrically driven viscoelastic jets: modeling and experiments. Korea Aust Rheol J 20(3):153–164
3. Chin SF, Jimmy FB, Pang SO (2018) Size controlled fabrication of cellulose nanoparticles for drug delivery applications. J Drug Deliv Sci Technol (43):262–266
4. Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem, 17(1), 231–243
5. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献