Stoichiometry of reactions of ozone and hypochlorous acid with lignin and hexenuronic acid and its chlorination

Author:

Ferro Estefania IsazaORCID,Ruuttunen Kyösti,Koivisto Jari J.,Perrin Jordan,Vuorinen Tapani

Abstract

AbstractThe stoichiometry of ozone and hypochlorous acid reactions with lignin and hexenuronic acid (HexA) was measured in bleaching experiments of Eucalyptus sp. kraft pulp. The progress of the reactions was followed by UV Resonance Raman spectroscopy that can quantify lignin and HexA based on the Raman scattering intensities of the carbon–carbon double bond in HexA and the aromatic ring in lignin. Here, one mol of ozone converted 0.16 mol of lignin (C9 monomer units) and 0.28 mol of HexA, whereas 1 mol of hypochlorous acid converted 0.09 mol of lignin and 0.23 mol of HexA. The use of a tertiary amine catalyst with the hypochlorous acid treatments did not affect these stoichiometries. The stoichiometric ratios showed that ozone was more efficient in oxidizing lignin than hypochlorous acid, while both electrophiles reacted with HexA to a similar extent. HexA reaction by hypochlorous acid was concluded to involve initial electrophilic chlorination of the carbon–carbon double bond, contributing to significant organochlorine (OX) formation in the pulp. Evidence on this was the linear correlation between the initial HexA content and OX (0.59 mol OX per mol HexA) and the high OX content in the xylan extracted from the bleached pulp. The 2D NMR HSQC and TOCSY spectra of the isolated xylans showed the disappearance of HexA signals after the treatment with hypochlorous acid and the appearance of a new spin system, yet to be fully identified.

Funder

Kemian tekniikan korkeakoulu, Aalto-yliopisto

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3