Abstract
AbstractThe prevention of bacteria colonization by immobilizing proteins with antimicrobial activity onto cotton fabrics was investigated. Such coatings have potential applications in medical dressing materials used in wound care and healing. Two antimicrobial proteins lysozyme and hydramacin-1 (HM-1) were surface immobilized through two linkers (3-aminopropyl) triethoxysilane (APTES) and citric acid in the presence of the water soluble carbodiimide coupling reagent 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate. Surface composition analysis by attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopies confirmed formation of the protein-cellulose conjugates. Antimicrobial activities of the different functionalized surfaces were found to vary between APTES and citric acid directed coatings. Citric acid immobilized lysozyme treated samples demonstrated superior activity against Gram-positive Bacillus subtilis, whereas APTES immobilized HM-1 treated samples demonstrated an advantage in inhibiting the growth of Gram-negative Escherichia coli. The antibacterial activity and stability of citric acid immobilized protein fabrics following sonication, boiling and chemical treatment were noticeably higher than that of the corresponding APTES immobilized protein fabrics. The dual coating of fibers with both antimicrobial proteins afforded efficient antimicrobial activities against both bacterial species. The results suggest that coating cotton fibers with antimicrobial proteins and peptides represents a feasible approach for developing active surfaces that prohibit growth and colonization of bacterial strains and can be potentially used in medical cotton-based fabrics.
Funder
Forschungszentrum Jülich GmbH
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献