Insights into the borohydride reduction of dialdehyde cellulose: the dilemma of competing reduction and β-elimination reactions

Author:

Simon Jonas,Fliri Lukas,Fröhlich Flavia,Sapkota Janak,Ristolainen Matti,Hummel Michael,Rosenau Thomas,Potthast Antje

Abstract

AbstractBorohydride reduction of dialdehyde cellulose (DAC) is a promising strategy to generate dialcohol cellulose as bio-based alternative to petroleum-based materials. However, the degradation of the polymer backbone according to β-elimination mechanisms limits the practical applications of the reaction. Therefore, we aimed at optimizing the process to suppress degradation reactions by varying reaction time, pH, and reagent stoichiometry. The degree of oxidation (DO) of the DAC intermediates significantly impacts the yields and molecular weights of the isolated dialcohol celluloses, with a “leveling-off” effect at higher DO values. Increasing the amount of sodium borohydride can minimize—but not entirely prevent—chain scissions. Lowering the pH value during reduction slows down the degradation but results in incomplete conversion of the aldehyde functionalities. Our study provides valuable insights into the consequences of side reactions during borohydride reduction of DAC as well as into chemistry and analysis of the dialdehyde cellulose/dialcohol cellulose system.Graphical abstractAbout a dilemma in cellulose chemistry: Dialcohol cellulose derived by periodate oxidation and subsequent borohydride reduction of cellulose has received increasing attention in the development of sustainable thermoplastic materials. The present study highlights the challenge of suppressing β-elimination and favoring the reduction pathway to optimize reaction conditions and minimize chain degradation.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3