Abstract
AbstractFibre reactivity is essential for cellulose dissolution and derivatisation and a porous fibre structure is one key determinant for a highly reactive pulp. Mechanical and enzymatic treatments are known to improve fibre reactivity and more recently, the combination of mechano-enzymatic treatment has been shown to synergistically enhance the beneficial effect. The aim of this work was to do a systematic study on the effect of dry matter content during enzymatic modification of fibres and define the conditions that optimally improve fibre porosity. The combined mechano-enzymatic treatments at 15–25 w% consistency had the most pronounced effect on fibre porosity and morphology analysed by solute exclusion technique, nitrogen sorption and scanning electron microscopy. Light microscopy imaging confirmed that the combined mechano-enzymatic treatment at high consistency (> 10 w%) resulted in extensive fibrillation of the treated fibres which was not observed after sole mechanical or enzymatic treatments.
Funder
Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. https://doi.org/10.1016/0168-1656(92)90074-J
2. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126
3. Bernfeld P (1955) Amylases, α and β. In: Colowick SP, Nok AJ (eds) Methods in enzymology. Academic Press, NY, pp 149–158
4. Berthold F, Gustafsson K, Sjöholm E, Lindström M (2001) An improved method for the determination of softwood kraft pulp molecular mass distributions. In: 11th International symposium on wood and pulping chemistry (June 11–14, Nice, France). pp 363–366
5. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献