Material properties and water resistance of inorganic–organic polymer coated cellulose paper and nanopaper

Author:

Solberg AmalieORCID,Zehner Jennifer,Somorowsky FerdinandORCID,Rose Klaus,Korpela Antti,Syverud KristinORCID

Abstract

AbstractCellulose-based materials represent a renewable, biodegradable, and environmentally friendly alternative to plastic from fossil resources. Nanopaper is a strong and lightweight material formed from cellulose nanofibrils (CNFs). Paper and nanopaper have been considered as excellent alternatives to plastics for use in agriculture and for packaging applications. However, common for both paper and nanopaper is their hydrophilic character, and consequently, poor water-resistance properties. ORMOCER®s are a class of inorganic–organic polymers with excellent barrier and protective properties used for a range of coating applications. Here we present ORMOCER®-coated paper and nanopaper. The coated papers and nanopapers are characterized, both in terms of their morphology, hydrophobicity, and mechanical properties. We demonstrate that the pressure used during the pressing and drying of paper and nanopaper influence their tear and tensile—properties, and that the morphology of the coated nanopaper differs significantly from that of the coated paper. While the ORMOCER® was impregnated within the porous network of the paper, a well-defined two-layered morphology was obtained with the coated nanopaper. Further, the biodegradability of the nanopaper with and without coating was assessed. The degradation study demonstrated that both the pressure used during the pressing and drying of the nanopaper, and the composition of the ORMOCER®, influenced the rate of degradation. Taken together, ORMOCER®-coated paper and nanopaper are promising for the preparation of materials that are both water-resistant, renewable, and biodegradable.

Funder

The Research Council of Norway

Bioeconomy in the North

RISE Research Institutes of Sweden

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3