Melt compounding of spray-dried cellulose nanofibrils/polypropylene and their application in 3D printing

Author:

Hwang Sungjun,Han Yousoo,Gardner Douglas J.

Abstract

AbstractMicro- and nano-scale cellulosic fillers exhibit excellent dispersion and distribution within a thermoplastic matrix during the process of melt compounding or injection molding. In this study, spray-dried cellulose nanofiber (SDCNF) powders were manufactured using a pilot-scale rotating disk atomizer spray dryer. Bleached Kraft pulp (BKP), unbleached Kraft pulp (UKP), and old corrugated cardboard pulp (OCC) fibrillated at a fines level of 90% were used as feedstock materials for spray-drying. BKP-, UKP-, and OCC- SDCNFs were compounded with polypropylene using a twin screw co-rotating extruder. Maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent in the composite formulations. The tensile, flexural, and impact properties of SDCNF-filled PP composites increased at 10 wt% SDCNF loading. The presence of SDCNFs in the PP matrix resulted in faster crystallization and a 12% reduction in the degree of crystallinity of the neat PP. The coefficient of thermal expansion (CTE) of neat PP was reduced by up to 31% attributable to the presence of the SDCNFs. Application of the SDCNF-reinforced PP composites in 3D printing reduced the shrinkage rate of the printed neat PP by 39%, and the printability of the PP was significantly improved with the addition of the SDCNFs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3