Author:
Hasan K. M. Faridul,Horváth Péter György,Kóczán Zsófia,Bak Miklós,Bejó László,Alpár Tibor
Abstract
AbstractNovel flame retardant hybrid composites were developed from lignocellulosic and carbon fibers reinforced with epoxy resin using hot pressing technology. The size of the lignocellulosic fibers was within 0.045 to 0.8 mm, and the carbon fibers ranged from 5 to 8 mm. The nominal thickness of the composites was 10 mm, whereas the nominal density was 730 kg/m3. The composite dimensions were 400 × 400 mm2. The developed panels were tested for internal bonding strength and flexural properties to investigate their mechanical performance. Furthermore, SEM (Scanning electron microscopy) test was conducted to examine the morphologies of the products before and after fracture and found substantial quantities of both types of fiber in the composite system. The EDX (Energy disruptive X-ray) analysis also displayed the chemical elements present in the developed products. Moreover, an FTIR (Fourier transform infrared spectroscopy) study showed strong chemical interactions among the lignocellulosic and carbon fibers with the thermosetting epoxy polymers. The flame retardancy tests of the composite materials also showed significant thermal stability, especially after loading carbon fibers in the composite system. Moreover, dimensional stability showed an improving trend with the increase of carbon fibers as the reinforcement. Overall, the composite materials developed using lignocellulosic and carbon fibers with epoxy resin are showing a novel route to develop composites with high mechanical performance and considerable flame retardancy.Graphical abstract
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献