Abstract
Abstract
Structural changes of cellulose microfibrils and microfibril bundles in unmodified spruce cell wall due to drying in air were investigated using time-resolved small-angle neutron scattering (SANS). The scattering analysis was supported with dynamic vapor sorption (DVS) measurements to quantify the macroscopic drying kinetics. Molecular dynamics (MD) simulations were carried out to aid in understanding the molecular-level wood-water interactions during drying. Both SANS experiments and simulations support the notion that individual cellulose microfibrils remain relatively unaffected by drying. There is, however, a significant decrease in fibril-to-fibril distances in microfibril bundles. Both scattering and DVS experiments showed two distinct drying regions: constant-rate drying and falling-rate drying. This was also supported by the MD simulation results. The shrinking of the fibril bundles starts at the boundary of these two regions, which is accompanied by a strong decrease in the diffusivity of water in between the microfibrils.
Graphic abstract
Funder
luonnontieteiden ja tekniikan tutkimuksen toimikunta
Aalto University
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献