Reduced graphene oxide/polyurethane coatings for wash-durable wearable piezoresistive sensors

Author:

Olivieri Federico,Rollo Gennaro,De Falco Francesca,Avolio Roberto,Bonadies Irene,Castaldo Rachele,Cocca Mariacristina,Errico Maria Emanuela,Lavorgna Marino,Gentile Gennaro

Abstract

AbstractGraphene-based functional coatings for cotton textiles were realized through an easy dip-coating procedure. Cotton fabrics were coated with a reduced graphene oxide (rGO) layer and then protected with a very thin polyurethane (PU) layer that does not affect the flexibility and the hand of the pristine cotton. The application of the rGO coating induces electrical conductivity to the fabric and the application of the PU phase increases the durability of the coatings, that show very stable surface resistivity after 10 washing cycles performed at temperatures up to 40 °C. Furthermore, the rGO and rGO/PU coated fabrics show good comfort properties, increased thermal conductivity and breathability with respect to cotton. In particular, the realized coatings allow to confine the heat transfer in correspondence of a localized heating source, which is very interesting for thermal therapy applications. Finally, the rGO/PU coated fabrics present a piezoresistive behaviour characterized by very stable electrical response to applied stretching up to 50% deformation, high sensitivity especially at low deformations with gauge factor values up to 11.7 and fast response time down to 500 ms when stretched at 100 mm/min rate at 2.5% strain. Overall, the results demonstrate that rGO/PU coated fabrics are very promising wash-durable electrically conductive e-textiles with improved comfort, enhanced thermal conductivity for possible thermal therapy applications, and piezoresistive properties for sensing applications as human motion monitoring.

Funder

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3