Author:
Wei Jiayuan,Geng Shiyu,Hedlund Jonas,Oksman Kristiina
Abstract
AbstractCO2 adsorption is a promising strategy to reduce costs and energy use for CO2 separation. In this study, we developed CO2 adsorbents based on lightweight and flexible cellulose nanofiber aerogels with monolithic structures prepared via freeze-casting, and cellulose acetate or acetylated cellulose nanocrystals (a-CNCs) were introduced into the aerogels as functional materials using an impregnation method to provide CO2 affinity. The microstructure of the adsorbent was examined using scanning electron microscopy, and compression tests were performed to analyze the mechanical properties of the adsorbents. The CO2 adsorption behavior was studied by recording the adsorption isotherms and performing column breakthrough experiments. The samples showed excellent mechanical performance and had a CO2 adsorption capacity of up to 1.14 mmol/g at 101 kPa and 273 K. Compared to the adsorbent which contains cellulose acetate, the one impregnated with a-CNCs had better CO2 adsorption capacity and axial mechanical properties owing to the building of a nanoscale scaffold on the surface of the adsorbent. Although the CO2 adsorption capacity could be improved further, this paper reports a potential CO2 adsorbent that uses all cellulose-based materials, which is beneficial for the environment from both resource and function perspectives. Moreover, the interesting impregnation process provides a new method to attach functional materials to aerogels, which have potential for use in many other applications.
Publisher
Springer Science and Business Media LLC
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献