An improved, less erroneous protocol for the classical “cuen”, “cuoxam” or “cadoxen” viscosity measurements of pulps

Author:

Zaccaron SaraORCID,Ahn KyujinORCID,Henniges UteORCID,Potthast AntjeORCID,Rosenau ThomasORCID

Abstract

AbstractCorrectness and reliability of molar mass data by viscometry in organometallic solvents (cuen, cuoxam, cadoxen) are compromised by the alkalinity of these solvents which causes immediate depolymerization especially in the case of pulps with higher carbonyl content (oxidative damage). The viscosity values thus correspond to the molar mass after the beta-elimination reactions that underly these degradative processes, which is sometimes significantly smaller than the molar mass determined by gel permeation chromatography (GPC) in the non-degrading solvent system DMAc/LiCl. Despite this well-known drawback, viscosity measurements have become a standard approach for molar mass measurements due to their ease and fastness, especially in the pulp and paper industries. A potential way to reduce the inherent error of these molar mass determinations via viscosity measurements is a reductive treatment prior to dissolution of the pulp in the organometallic solvents, which converts the labile, alkali-sensitive carbonyl structures back to the respective alcohols. Using sodium borohydride (NaBH4) on different types of cellulosic pulps, we demonstrate the beneficial effects of such a reduction step on the determined degree of polymerization (DP) for all three common solvents: cuen, cuoxam and cadoxen. Molar mass distributions and profiles of carbonyl groups were determined by GPC and by carbonyl selective fluorescence labeling (“CCOA method”). Such a reductive treatment was especially valuable for hemicellulose-containing pulps. While the decreased measurement error according to the new protocol is beyond doubt, an immediate acceptance in the pulp and paper industries is at least questionable, because the new, more correct data would not agree with the old – wrong, but consistent – numbers accumulated over years and decades. In the long run, however, the new, improved protocol will prevail here as well due to its lower error rate.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3