Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: tracking lattice changes following physical treatments

Author:

Wang Han,Aoki Dan,Teramoto Yoshikuni,Tsuchikawa Satoru,Inagaki Tetsuya

Abstract

AbstractThe authors’ series of studies aimed to explore the potential of terahertz time-domain spectroscopy (THz-TDS) in cellulose crystallographic studies, since THz radiation can detect most intermolecular vibrations and respond to lattice phonons. In this study, we tracked changes in four types of cellulose after ball milling. As the planetary ball milling time increases, it is observed through electron microscopy that the four types of cellulose particles are gradually destroyed into finer particles, while gel permeation chromatography can prove that the molecular weight gradually decreases after ball milling and the dispersity gradually approaches one, which indicates that the dispersion of the material was reduced. The most fascinating observation was made by THz-TDS, that is we have confirmed that after ball milling, the absorption characteristics of cellulose I and II in cellulose I treated with 10% NaOH (crystalline partial transition from cellulose I to II) exhibited an opposite trend. Specifically, the absorption of cellulose II at 2.40THz and 2.77THz increased, while the absorption of cellulose I at 2.11THz and 3.04THz decreased after ball milling, which suggests an increased conversion rate of cellulose I to cellulose II post-milling. Cellulose with different crystalline allomorphs shows different characteristic absorption in the THz region, and the peak position will not change even after the ball milling, only the absorption intensity changes. Although it can be observed through the most traditional X-ray diffraction method that the crystallinity index of all cellulose samples gradually decreases after ball milling. However, different from the THz results, the change after ball milling of cellulose I treated with 10% NaOH is only reflected in very subtle pattern changes, that is, the peak close to the 200 crystalline plane position is slightly shifted after ball milling.

Funder

Japan Society for the Promotion of Science

Nagoya University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3