A comparative study of lignin-containing microfibrillated cellulose fibers produced from softwood and hardwood pulps

Author:

Li Huisi,Chen Bin,Kulachenko Artem,Jurkjane Vilhelmine,Mathew Aji P.,Sevastyanova Olena

Abstract

AbstractThe expanding field of lignin-containing nanocellulose offers a sustainable alternative to fossil-based substances in applications such as packaging, coatings, and composites. This has underscored the importance to explore the impact of raw materials due to the complexities of lignin structures and different raw fiber characteristics, which plays a significant role in determining the properties of the resultant lignin-rich cellulose materials. This study presents a detailed investigation and comparison on the production and structure-property relationships of lignin-containing microfibrillated cellulose (LMFC) fibers prepared from unbleached softwood and hardwood kraft pulps. The microfibrillation process was analyzed for both softwood and hardwood pulps, comparing the results across various stages of fibrillation. Distinguishing features of lignin structures in softwood and hardwood pulps were identified through Py-GC/MS analysis. Additionally, Digital Image Correlation was employed to investigate the varying failure patterns in LMFC films derived from different wood species. Softwood-derived LMFC films demonstrate less strain-concentrated regions and strain variation, attributed to the formation of more physical crosslinking joints by the elongated fibers. Consequently, softwood-origin LMFC films displayed superior load-sharing and enhanced tensile strength (287 MPa) compared to those derived from hardwood. Additionally, the denser lignin structures in unbleached softwood pulp further boosted the stiffness of resultant softwood-derived films. Upon recycling, LMFC films exhibited superior recovery of mechanical properties following drying, suggesting their significant potential for widespread commercial use.

Funder

China Scholarship Council

Wood Pulping Chemistry Research Network

Knut and Alice Wallenberg Foundation (KAW) through the Wallenberg Wood Science Center

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3