Bulk characterization of highly structured tissue paper based on 2D and 3D evaluation methods

Author:

Reitbauer Jürgen,Machado Charry EduardoORCID,Eckhart Rene,Sözeri Cemile,Bauer Wolfgang

Abstract

AbstractThe structure of the fibre network in tissue paper can be complex and difficult to analyze, due to the presence of superimposed structures such as creping and patterns that occur, for example, in through-air-dried (TAD) tissue. Properties like high absorbency, a pleasant handfeel, and strength-related characteristics are closely related to the fibre network structure. Therefore, in addition to standard tissue testing methods, techniques that provide insights into the intrinsic properties of the tissue fibre network are essential for a deeper understanding and potential for further optimization. In this study, we utilized 2D cross-sectional images and 3D X-ray microtomography ($$\mu$$ μ -CT) to evaluate and quantify the intrinsic properties of highly structured TAD tissue. We compared the results obtained from these two methods, focusing on intrinsic thickness, porosity, and the fibre volume to fibre surface area (Fv/Fs) ratio. The open structure of the fibre network, fabric patterns, creping, and protruding fibres make it challenging to define bulk boundaries. Therefore, we examined the effect of different bulk expansion diameters on intrinsic properties. This procedure allows to quantify the effects of under- and overestimation of bulk boundaries, and to determine which regions within the fibre network are affected by bulk expansion. In terms of intrinsic thickness, both 2D and 3D evaluations show similar trends, which facilitates direct comparison of 2D and 3D data. Porosity, on the other hand, does not show any correlation between 2D and 3D-based data. Together with the Fv/Fs parameter, this leads to the conclusion that the depiction of 2D data does not represent the whole fibrous material but predominantly fibres perpendicular or close to perpendicular to the cut plane, whereas 3D data represents all fibres, fibre bonds and network connectivity. This work aims at presenting modern approaches and novel procedures to quantify intrinsic properties of open fibre structures such as tissue, but could also be applied to fibrous networks in general. The introduced methods could provide the basis for future research on the interrelations between intrinsic properties and key tissue properties such as absorbency and handfeel.

Funder

Austrian Research Promotion Agency

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3