Water-soluble quaternized copolymers as eco-friendly cationic modifiers of cotton fabrics for salt-free reactive dyeing applications

Author:

Tsimpouki Loukia,Papapetros Konstantinos,Anastasopoulos Charalampos,Sygellou Labrini,Soto-Beobide Amaia,Andrikopoulos Konstantinos S.,Voyiatzis George A.,Bokias Georgios,Kallitsis Joannis K.

Abstract

AbstractThe modification of cotton fabrics with water-soluble cationic copolymers for salt-free dyeing applications with reactive dyes is explored in the present work. To this end, a family of bifunctional water-soluble cationic copolymers was designed through the chemical modification of poly(4-vinyl benzyl chloride), PVBC, with triethylamine, TEAM. These copolymers were applied onto cotton fabrics in aqueous alkaline solutions at moderate temperature (60 °C). The successful cotton modification was verified through the characterization of the modified samples with Raman and XPS spectroscopy. Moreover, a polymer coverage of the fabric of the order of 0.1% (w/w) was estimated following the polymer exhaustion through UV–Vis spectroscopy of the aqueous solutions used for the modification. The modification kinetics were followed through the evolution of the Raman spectra of the modified fabrics, the polymer exhaustion of the aqueous modification solutions and, indirectly, the dye exhaustion of the dyebaths using a reactive dye, namely Novacron Ruby S-3B. All techniques claim that fabric modification is practically accomplished within the first 1–2 h. The double functionality of the copolymers was explored through the XPS study of the modified fabrics, revealing that both electrostatic binding and covalent bonding of the cationic copolymers with the anionic surface of the fabric are expected to take place. As an important consequence, the polymer-modified fabrics are strongly dyed under eco-friendlier conditions, namely in salt-free alkaline solutions at room temperature, in contrast to the barely dyed unmodified fabric. Graphical abstract

Funder

European Union and Greek national funds

University of Patras

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3