Degradation of cellulosic key chromophores by ozone: a mechanistic and kinetic study

Author:

Budischowsky DavidORCID,Zwirchmayr Nele SophieORCID,Hosoya TakashiORCID,Bacher MarkusORCID,Hettegger HubertORCID,Potthast AntjeORCID,Rosenau ThomasORCID

Abstract

AbstractChromophores, colored substances of rather high stability that reduce brightness, are present in all kinds of cellulosic products, such as pulp, fibers, aged cellulosic material, and even in very low concentrations in highly bleached pulps. Thus, they are the prime targets of industrial pulp bleaching. In this study, the three cellulosic key chromophores 2,5-dihydroxy-1,4-benzoquinone (DHBQ, 1), 5,8-dihydroxy-1,4-naphthoquinone (DHNQ, 2), and 2,5-dihydroxyacetophenone (DHAP, 3) were bleached with ozone at pH 2 resembling industrial conditions (Z-stage). Bleaching kinetics were followed by UV/Vis spectrophotometry. The chemical structures of the degradation products were analyzed using NMR spectroscopy as well as GC/MS and confirmed by comparison with authentic reference compounds. The main, stable intermediates in the ozonation reactions have been elucidated by employing ozone not in excess but roughly stoichiometric amounts: mesoxalic acid (4) from DHBQ (1), rhodizonic acid (5) from DHNQ (2), and hydroxy-[1,4]-benzoquinone (8) from DHAP (3). As the final products at a large excess of ozone, a complex mixture of carboxylic acids (C1 to C4) was obtained, with the C4 acids being formed by subsequent condensation of smaller fragments (malonic acid and mesoxalic acid) rather than directly as ozonation products. At shorter reaction times and lower ozone excess, some aldehydes and ketones (C2 and C3) were contained in addition. The mixture of the degradation products was not completely stable but tended to undergo further changes, such as decarboxylation and condensation reactions. The reaction mechanisms of degradation by ozone, intermediate formation and re-condensation are described and discussed. Graphic abstract

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3