Influence of polysiloxane microspheres on hydrophobicity, structure and mechanical properties of paper materials

Author:

Pospiech PiotrORCID,Olejnik KonradORCID,Mizerska UrszulaORCID,Zakrzewska JoannaORCID

Abstract

Abstract The aim of the study was to investigate the impact of three types of polysiloxane microspheres on the barrier properties, structure and mechanical properties of paper. An influence of new silicon filler on properties of cellulose paper sheet was analyzed. Polysiloxane microspheres were used as an additive introduced into the network of cellulosic fibers in order to obtain new functional properties of the paper. The following types of microspheres were used in the research: M1 hydrophilic of average diameter 23.5 µm, M2 hydrophobic of average diameter 3.1 µm and M3 hydrophobic of average diameter 23.5 µm. The obtained handsheets were analyzed for changes in apparent density, roughness, tensile strength, bursting strength, and tear resistance. Wettability and resistance to liquid were characterized by contact angle measurement, penetration dynamics analysis  and uniformity of liquid penetration measured using an extended liquid penetration analyser. It was found that the presence of M2 (small diameter) microspheres improved significantly the paper’s hydrophobicity without changing the mechanical properties. The addition of M1 and M3 (large diameter) microspheres decreased the mechanical properties of the paper samples and did not improve their hydrophobicity. However, M1 microspheres resulted in increased uniformity of liquid penetration through the paper structure. The presented studies also show that it is possible to obtain paper with high hydrophobic properties only through the filling application when polysiloxane microspheres are used for this purpose. The results also indicate that it is not necessary to hydrophobize the entire material structure in order to achieve its high hydrophobicity. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3