In operando monitoring of wood transformation during pretreatment with ionic liquids

Author:

Viell JörnORCID,Szekely Noemi K.,Mangiapia GaetanoORCID,Hövelmann Claas,Marks CarolineORCID,Frielinghaus HenrichORCID

Abstract

Abstract The conversion of lignocellulosic biomass or wood into chemicals still poses a challenge due to the recalcitrance of this composite-like material consisting of lignin, hemicellulose and cellulose. A very high accessibility of cellulose is reported by a pretreatment with ionic liquids that enables high conversion rates by enzymatic hydrolysis. However, the underlying mechanisms have not yet been monitored in operando nor are they fully understood. We monitored the transformation of wood in ionic liquids using small-angle neutron scattering to observe changes in the material in operando and to elucidate the intrinsic effects. The data analysis shows three different stages that is (1) impregnation, (2) the formation of voids and (3) increasing structure size within cellulose fibrils. This consecutive mechanism coincides with macroscopic disintegration of the tissue. The analysis further reveals that the reduction of order in longitudinal direction along the fiber axis is a prerequisite for disintegration of cells along the radial direction. This understanding supports further research and development of pretreatment processes starting from lignocellulosic raw material. Graphic abstract

Funder

Exzellenzcluster “The Fuel Science Center”

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3