Comparative assessment of chemical and biochemical approaches for the activation of lignocellulosic materials and emerging opportunities for expansin-related proteins

Author:

Hiltunen Salla,Sapkota Janak,Ioannou Eleni,Haddad Momeni Majid,Master Emma,Ristolainen Matti

Abstract

AbstractCellulose activation is a necessary step in many industrial processes including production of cellulose derivatives, regenerated cellulose, biofuels and biochemicals. Expansins and expansin-related proteins have been shown to disrupt the fibrillar aggregation and loosen the structure of lignocellulosic materials but typically lack lytic activity. Therefore, they offer a new but rather unexploited possibility for biomass to obtain better accessibility and reactivity. From an applied perspective, expansin-related proteins have been investigated for their potential to promote enzymatic hydrolysis of cellulosic substrates for the purpose of producing biofuels. The aim of this review is to compare conventional and emerging technologies relevant to cellulose activation, and critically evaluate the potential of expansin-related proteins for this purpose. As part of this assessment, methods to evaluate the action of expansin-related proteins on cellulosic substrates are summarized, and reported impacts are discussed in relation to source of the cellulosic substrate and treatment conditions. An outlook on prospective applications of expansin-related proteins is presented.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3