Evaluating the potential of ozone in creating functional groups on cellulose

Author:

Valls CristinaORCID,Cusola OriolORCID,Roncero M. BlancaORCID

Abstract

AbstractSeveral eucalyptus pulps (85% of cellulose) with different lignin and HexA content (unbleached, TCF and ECF) as well as cotton linters (97% of cellulose) were treated with ozone (at different pH and ozone doses) in order to modify its fibre-components. Special interest was given in the introduction of functional groups in carbohydrates. The presence of these groups was mainly identified by the chain scissions due to carbonyl groups (CSC=O) produced in cellulose during viscosity measurement. At a dose of 0.5% odp of ozone, the greatest amount of CSC=O (0.5) was created at acidic pH and with the ECF pulp, followed by the TCF (0.3) and by the unbleached (0.2). The same CSC=O (0.2) was obtained in cotton pulp. In this pulp, the ozone concentration had to be increased for the treatment to be effective. A further increase in the accessibility in both pulps was achieved by applying a washing stage between two ozone stages at 0.5% (0.5 + 0.5). With this treatment, the CSC=O was increased to 5.3 in the ECF, to 0.8 in the TCF and only to 0.3 in cotton. Brightness reversion and the amount of DNPH consumed were also used to verify the presence of functional groups. At 0.5 + 0.5, brightness reversion was increased from 16 to 55% in ECF, from 27 to 46% in TCF and from 7 to 31% in cotton. Therefore, it is shown that functional groups can be introduced by ozone in carbohydrates, but this effect strongly depends on the lignin, HexA and hemicellulose content. Graphical abstract

Funder

Ministerio de Ciencia, Innovación y Universidades

Agència de Gestió d’Ajuts Universitaris i de Recerca

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3