Author:
Victoria Ashley,Hine Peter John,Ward Keeran,Ries Michael Edward
Abstract
AbstractIn this work, statistical design of experiments (DoE) was applied to the optimization of all cellulose composites (ACCs) using cotton textile and interleaf films under applied heat and pressure. The effects of dissolution temperature, pressure and time on ACC mechanical properties were explored through a full factorial design (23) and later optimized using Response Surface Methodology. It was found that the experimental design was effective at revealing the underlying relationship between Young’s modulus and processing conditions, identifying optimum temperature and time settings of 101 °C and 96.8 min respectively, to yield a predicted Young’s modulus of 3.3 GPa. This was subsequently validated through the preparation of in-lab test samples which were found to exhibit a very similar Young’s modulus of 3.4 ± 0.2 GPa, confirming the adequacy of the predictive model. Additionally, the optimized samples had an average tensile strength and peel strength of 72 ± 2 MPa and 811 ± 160 N/m respectively, as well as a favorable density resulting from excellent consolidation within the material microstructure. This work highlights the potential of DoE for future ACC process understanding and optimization, helping to bring ACCs to the marketplace as feasible material alternatives.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献