Liquid penetration in hydrophobised cellulose based sheets

Author:

Nicasy R. J. K.ORCID,Waldner C.ORCID,Erich S. J. F.ORCID,Adan O. C. G.ORCID,Hirn U.ORCID,Huinink H. P.ORCID

Abstract

AbstractControlling the liquid transport within cellulose-based materials is crucial for numerous applications, including printing, bio-assays, packaging, and cleaning. To control liquid transport and quality, post-processes such as calendering, a way of compressing and smoothen the paper using hard pressure rollers, and hydrophobisation, are commonly employed. To understand how these processes influence liquid uptake, this study uses an Ultra-Fast Imaging (UFI) NMR method to analyse moisture profiles during liquid uptake in various cellulose-based paper sheets with diverse levels of hydrophobisation and calendering. It is demonstrated that calendering decreases penetration speed and increases swelling. The reduction in penetration speed could be linked to a decrease in permeability upon calendering, as measured by the Gurley air permeance. Additionally, it is observed that hydrophobisation delayed and slowed down liquid uptake in the paper samples, and, in extreme cases, completely altered the liquid uptake phenomena. With substantial hydrophobisation, liquid penetration no longer proceeded with a well-defined liquid front but exhibited huge levels of fingering. Furthermore, is was observed that within highly hydrophobised paper, fibres were first prewetted, initiating a first swelling, before the pores between fibres could be filled. Subsequently, water could enter the pores between, allowing fibre bonds to be broken, leading to a second swelling of the paper sheet. The improved understanding will contribute to better control of the flow within cellulose-based materials, benefiting applications such as printing, packaging and microfluidics.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3