Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation

Author:

Lefroy Katherine S.,Murray Brent S.ORCID,Ries Michael E.

Abstract

AbstractMicrogel particles have recently emerged as an alternative route to emulsion stabilisation. Classed as soft colloidal particles, their ability to swell to differing degrees in certain solvents and to rearrange once attached to an interface makes them highly suitable for systems requiring long-term stabilization, such as formulations in the food, agricultural, cosmetic and pharmaceutical industries. Microgels made with biocompatible polymers such as proteins and polysaccharides in particular offer an environmental advantage and currently form a very active area of research. Cellulose, being a natural, biodegradable polymer, is an attractive ingredient for gels and microgels. However, its use as a functional material is often somewhat hindered by its insolubility in water and most other organic solvents. Furthermore, the surface activity of cellulose has proven difficult to harness and therefore its ability to act as an emulsion stabiliser has been almost exclusively applied to oil-in-water (O/W) emulsions, with very few reports on its water in oil (W/O) activity. This review aims to summarise some of the recent progress made in the microgel field including their ability to act as emulsion stabilisers, with a focus on cellulose microgels (CMGs). A brief overview of cellulose processing is also given, describing the dissolution and reprecipitation routes used to functionalise cellulose without covalent modification and the potential for cellulose particles and CMGs to act as O/W and W/O emulsion stabilisers. Graphic abstract

Funder

University of Leeds

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3