Breeding for black rot resistance in grapevine: advanced approaches for germplasm screening

Author:

Bettinelli Paola,Nicolini Daniela,Giovannini Oscar,Stefanini Marco,Hausmann Ludger,Vezzulli SilviaORCID

Abstract

AbstractCrop improvement by means of traditional or molecular breeding is a key strategy to accomplish the European Green Deal target of reducing pesticides by 50% by 2030. Regarding viticulture, this is exacerbated by the massive use of chemicals to control pathogen infections. Black rot is an emergent disease caused by the ascomycete Phyllosticta ampelicida, and its destructiveness is alarming vine growers. Implementing and improving effective phenotyping strategies are fundamental preliminary steps to breed disease resistant varieties and this work suggests good practices adopted for this purpose. Primarily, the pedigree of black rot resistance donors was reconstructed based on the collection of phenotypic historical data, highlighting unexplored sources of black rot resistance. Strains used for artificial infections were isolated, genetically characterized and mixed to avoid race-specific resistance selection. A new inoculation protocol based on the use of leaf mature lesions was developed. Ex vivo inoculation on detached leaves was effective for the evaluation of conidia germination and hyphal growth, but not for disease progression. Finally, the pedigree was used for the identification of 23 genotypes to be tested. Two breeding selections (NY39 and NY24) resulted symptomless in all assessments and a third one (F25P52) also showed very high resistance, although with a greater variability. Other two genotypes (F12P19 and ‘Charvir’) fell within the medium resistance category, making them good candidates in a regime of well-timed preventive treatments. In conclusion, this work was effective to a comprehensive parental line characterization and preparatory towards grapevine breeding programs for black rot resistance.

Funder

Fondazione Edmund Mach - Istituto Agrario di San Michele all'Adige

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3