Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum)

Author:

Xu Jiemeng,Wolters-Arts Mieke,Mariani Celestina,Huber Heidrun,Rieu IvoORCID

Abstract

AbstractHigh ambient temperature has adverse effects on plant vegetative and reproductive development and reduces crop yield. To better understand the importance of male and female fertility for tomato fruit set ability under high temperature conditions and to test whether heat tolerance levels among and between reproductive and vegetative traits of genotypes correlate with each other, 13 tomato cultivars were subjected to long-term moderate heat (LTMH) or short-term heat shock (STHS), depending on the trait that was evaluated. LTMH caused significant decrease in performance of nearly all reproductive traits, i.e. pollen viability, pollen number, female fertility, seeded-fruit set and flower number per inflorescence, but not in inflorescence number. Considerable variation was found among cultivars, both under control and LTMH conditions. The cultivars Nagcarlang, Saladette and Malintka 101 produced a higher percentage of viable pollen under LTMH. For fruit set under LTMH condition, only cultivars that had been previously reported as being heat-tolerant produced fruits with seeds. STHS negatively affected vegetative traits concerning seedling survival and membrane stability. Correlation analysis revealed relationships between various traits within the control and heat treatments, but not between the two. Under heat stress fruit set was positively correlated with pollen viability, as well as with flower number per inflorescence. However, no significant correlations were found between vegetative and reproductive traits. Our data highlight the prominent role of pollen viability for tomato fertility under LTMH growth conditions. The observed variation in thermotolerance among different cultivars offers the possibility to decipher underlying physiological and genetic mechanisms.

Funder

China Scholarship Council

Dutch Topsector Horticulture and Starting Materials

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3