Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley

Author:

Niks Rients E.,Alemu Sisay K.,Marcel Thierry C.,van Heyzen Skye

Abstract

AbstractBarley (Hordeum vulgare L.) mapping populations have been developed that are useful to study the inheritance of quantitative resistance to adapted and unadapted rust fungi. In a recent host range study, we found that the parents of those mapping populations also differed in their resistance to the crown rust Puccinia coronata (PcE) of couch grass (Elymus repens), as well as three isolates of P. striiformis, representing formae speciales hordei (Psh), tritici (Pst) and bromi (Psb). Available mapping populations were phenotyped at the seedling stage to map the genes conferring resistance to these rust isolates. Resistances to PcE, Psb and Pst inherit quantitatively. This contrasted with reports that barley nonhost resistance to unadapted formae speciales of P. striiformis is based on major genes. We mapped QTLs effective against PcE using relative latency period and relative infection frequency. Some QTLs for resistance were contributed by ‘Vada’ and ‘Cebada Capa’, others by SusPtrit. One PcE-resistance QTL on 3H, contributed by ‘Cebada Capa’, co-localised with a QTL effective against four unadapted grass rust species, indicating either a single gene with broad-spectrum effectiveness or a cluster of rather specific genes. Chromosome arm 7HL from Vada seems particularly rich in genes for resistance to rust fungi. Resistance to Pst and Psb, measured as the number of uredinia, tended to co-localise with each other and mapped to 1HS, 2HL and 7HL. The nearly complete resistance of Ethiopian line L94 to Psh was due to a major gene mapped on chromosome 4H. That gene is likely the recessive gene rpsGZ, which was previously reported in the Ethiopian line Grannenlose Zweizeilige.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3