Structural characterization of the DRF1 gene of Aegilops speltoides and comparison of its sequence with those of B and other Triticeae genomes

Author:

Thiyagarajan Karthikeyan,Latini Arianna,Cantale Cristina,Galeffi PatriziaORCID

Abstract

AbstractThe genus Aegilops L. has been intensively investigated due to its close relationship with wheat (Triticum L.) as contributor of B and D subgenomes. Because of their vast genetic diversity, Aegilops species represent a rich source of alleles of agronomic interest, which could be used to widen the wheat gene pool and improve tolerance to diseases, pests, drought, cold and other environmental stresses. We report the isolation and characterization of the Dehydration Responsive Factor 1 (DRF1) gene in three accessions of Ae. speltoides coming from different regions of the Fertile Crescent. The DRF1 gene belongs to the DREB gene family and encodes transcription factors which play a key role in plant response to water stress. As in other cereals, the DRF1 gene in Aegilops speltoides consists of four exons and three introns and undergoes alternative splicing. A processed pseudogene was also identified and compared with the sequence of an actual mRNA transcript, breaking new ground in the understanding of the complex regulation mechanism of this gene. The genetic diversity was evaluated by comparison of inter- and intra-species variation among some Aegilops and Triticeae, by considering both the whole gene and exon 4 sequences. The phylogenetic analyses were able to cluster the sequences in well-supported clades attributable to the genomes analysed. The overall results suggest that there is a high similarity between the B and S genome copies of the DRF1 gene but also features indicating that the two genomes have evolved independently.

Funder

Ente per le Nuove Tecnologie, l'Energia e l'Ambiente

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3