Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’

Author:

Amoah Nana Kofi AbakaORCID,Akromah Richard,Kena Alex Wireko,Manneh Baboucarr,Dieng Ibnou,Bimpong Isaac Kofi

Abstract

AbstractSalt stress is a menace to rice production and a threat to food security worldwide. We evaluated 308 F4 families from Sahel 317/Madina Koyo for tolerance to salt stress at the early seedling stage. To better understand genomic regions controlling tolerance in the population, we genotyped the progenies and the two parents using single nucleotide polymorphism (SNP) markers and regressed the genotypic data on their phenotype to detect QTLs. An average reduction of 63.4% was observed for all fitness-related traits among the F4 families. A total of 46 progenies recorded an average salt injury score (SIS) between 1–3 and were rated as tolerant to salt stress at the early seedling stage. A high-density genetic map was constructed for the 12 rice chromosomes using 3698 SNP markers. Multiple interval mapping identified 13 QTLs for SIS, shoot length, shoot dry weight and root length on chromosomes 2, 3, 4, 6, 7, 10 and 12, with trait increasing alleles coming from both parents. Two (qSDW2 and qRL2.2) and three (qSL2, qRL2.1 and qSIS2) QTLs at different regions on chromosome 2 and another two on chromosome 7 (qSDW7 and qSL7) were tightly linked. These QTLs could facilitate breeding for salt tolerance at the early seedling stage as direct selection for one, would mean indirectly selecting for the other. Fine mapping of these novel QTLs in a different genetic background is necessary to confirm their stability and usefulness in breeding for tolerance to salinity in rice.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

Reference67 articles.

1. Ahmed ME, Khawla EM, Elshiekh AI, Nagla NS (2012) Impact of salt stress on seed germination and early seedling growth of three Sorghum (Sorghum biolor L. Moench) cultivars. Sci Technol 2(2):16–20

2. Almodares A, Hadi MR, Kholdebarin B, Samedani B, Kharazian ZA (2014) The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl− and K+ ions in relation to salt stress. J Environ Biol 35:733–739

3. Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield component in maize. Theor Appl Genet 92:817–826

4. Barua R, De Ocampo M, Egdane J, Ismail AM, Mondal S (2015) Phenotyping rice (Oryza sativa L.) genotypes for physiological traits associated with tolerance of salt stress at seedling stage. Sci Agric 12:156–162

5. Bhadru D, Rao VT, Mohan YC, Bharathi D (2012) Genetic variability and diversity studies in yield and its component traits in rice (Oryza sativa L.). SABRAO J. Breed. Genet. 44(1):129–137

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3