Improving the efficiency of multi-location field trials with complete and incomplete relationship information

Author:

Michel SebastianORCID,Löschenberger Franziska,Ametz Christian,Bürstmayr Hermann

Abstract

AbstractThe increasingly cost-efficient availability of ‘omics’ data has led to the development of a rich framework for predicting the performance of non-phenotyped selection candidates in recent years. The improvement of phenotypic analyses by using pedigree and/or genomic relationship data has however received much less attention, albeit it has shown large potential for increasing the efficiency of early generation yield trials in some breeding programs. The aim of this study was accordingly to assess the possibility to enhance phenotypic analyses of multi-location field trials with complete relationship information as well as when merely incomplete pedigree and/or genomic relationship information is available for a set of selection candidates. For his purpose, four winter bread wheat trial series conducted in Eastern and Western Europe were used to determine the experimental efficiency and accuracy of different resource allocations with a varying degree of relationship information. The results showed that modelling relationship between the selection candidates in the analyses of multi-location trial series was up to 20% more efficient than employing routine analyses, where genotypes are assumed to be unrelated. The observed decrease in efficiency and accuracy when reducing the testing capacities was furthermore less pronounced when modelling relationship information, even in cases when merely partial pedigree and/or genomic information was available for the phenotypic analyses. Exploiting complete and incomplete relationship information in both preliminary yield trials and multi-location trial series has thus large potential to optimize resource allocations and increase the selection gain in programs that make use of various predictive breeding methods.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3