Genomic and pedigree‐based predictive ability for quality traits in tea (Camellia sinensis (L.) O. Kuntze)

Author:

Lubanga Nelson,Massawe Festo,Mayes Sean

Abstract

AbstractGenetic improvement of quality traits in tea (Camellia sinensis (L.) O. Kuntze) through conventional breeding methods has been limited, because tea quality is a difficult and expensive trait to measure. Genomic selection (GS) is suitable for predicting such complex traits, as it uses genome wide markers to estimate the genetic values of individuals. We compared the prediction accuracies of six genomic prediction models including Bayesian ridge regression (BRR), genomic best linear unbiased prediction (GBLUP), BayesA, BayesB, BayesC and reproducing kernel Hilbert spaces models incorporating the pedigree relationship namely; RKHS-pedigree, RKHS-markers and RKHS markers and pedigree (RKHS-MP) to determine the breeding values for 12 tea quality traits. One hundred and three tea genotypes were genotyped using genotyping-by-sequencing and phenotyped using nuclear magnetic resonance spectroscopy in replicated trials. We also compared the effect of trait heritability and training population size on prediction accuracies. The traits with the highest prediction accuracies were; theogallin (0.59), epicatechin gallate (ECG) (0.56) and theobromine (0.61), while the traits with the lowest prediction accuracies were theanine (0.32) and caffeine (0.39). The performance of all the GS models were almost the same, with BRR (0.53), BayesA (0.52), GBLUP (0.50) and RKHS-MP (0.50) performing slightly better than the others. Heritability estimates were moderate to high (0.35–0.92). Prediction accuracies increased with increasing training population size and trait heritability. We conclude that the moderate to high prediction accuracies observed suggests GS is a promising approach in tea improvement and could be implemented in breeding programmes.

Funder

University of Nottingham Malaysia Campus

Unilever

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3