Heterotic affinity and combining ability of exotic maize inbred lines for resistance to aflatoxin accumulation

Author:

Meseka SilvestroORCID,Williams W. Paul,Warburton Marilyn L.,Brown Robert L.,Augusto Joao,Ortega-Beltran Alejandro,Bandyopadhyay Ranajit,Menkir Abebe

Abstract

AbstractAflatoxin accumulation in maize (Zea mays L.) kernels is a serious economic and health problem that reduces grain quality and nutritional values and causes death to livestock and humans. Understanding the genetic parameters and heterotic responses of exotic maize inbred lines can facilitate their use for developing aflatoxin resistant parents of hybrids in Africa. This study was designed to (1) determine the heterotic affinities of aflatoxin resistant exotic lines, (2) identify exotic inbreds with good combining ability, and (3) determine the mode of inheritance of resistance to aflatoxin contamination in these lines. A line × tester mating design was used to determine combining ability of 12 yellow and 13 white inbreds and classify them into heterotic groups. The inbreds were crossed to two adapted testers representing two African heterotic groups and the resulting testcrosses along with hybrid checks were evaluated in separate trials at two locations for 2 years in Nigeria. General combining ability (GCA) effects were more important than specific combining ability effects for aflatoxin and grain yield. Among 15 exotic inbred lines having negative GCA effects for aflatoxin and 13 with positive GCA effects for grain yield, six combined the two desired traits. Five white and six yellow endosperm testcrosses were found to be good specific combiners for the two desired traits. The exotic lines with negative GCA effects for aflatoxin accumulation will be used as donor parents to develop backcross populations for generating new inbred lines with much higher levels of resistance to aflatoxin accumulation.

Funder

USDA, Agricultural Research Service

United States Agency for International Development

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3