QTL for chlorophyll fluorescence of barley plants grown at low oxygen concentration in hydroponics to simulate waterlogging

Author:

Bertholdsson N-O,Holefors A.,Macaulay M.,Crespo-Herrera L. A.

Abstract

Abstract Waterlogging is a major factor limiting barley grain yield worldwide. Climate change will likely increase this water stress in Northern Europe. Breeding for waterlogging tolerance (WLT), as for other abiotic stresses, is difficult, but identification of genetic markers linked to genes affecting WLT could facilitate the breeding process. To identify a suitable marker population, parents of 14 double-haploid (DH) barley populations were tested for segregation of biomass growth reduction in waterlogged soil. The most interesting was found in the offspring from crossing cv. Psaknon and breeding line (SLUdt1398 × Mona4). Hence, 120 DH-lines derived from this cross were phenotyped for the chlorophyll fluorescence parameter quantum yield (QY) of electron transport of PSII from leaves of hypoxia-stressed plants and further genotyped with 384-SNP Illumina GoldenGate Bead Array. Five quantitative trait loci (QTL) for QY, with a narrow sense heritability of 0.87, were identified on chromosomes 4, 6 and 7H. They had additive effects ranging from 0.74 to 1.35 % with LOD scores from 3 to 12 and explained variance from 6 to 29 %. The major alleles for high QY were from cv. Psaknon; i.e., QY was low if the alleles from cv. Psaknon were not present. Based on leaf necrosis and residual biomass data, the four most interesting QTL may be also in two other populations with completely different progeny, which shows a certain stability of these QTL. The possibility of using marker assistant selection for WLT is discussed, as is possible concurrent improvement of drought tolerance and grain yield.

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3