Abstract
AbstractIn this manuscript we provide a representation in infinite dimension for stochastic optimal control problems with delay in the control variable. The main novelty consists in the fact that the representation can be applied also to dynamics where the delay in the control appears as a nonlinear term and in the diffusion coefficient. We then apply the representation to a LQ case where an explicit solution can be found.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Biagini, S., Gozzi, F., Zanella, M.: Robust portfolio choice with sticky wages. SIAM J. Financ. Math. 13(3), 1004–1039 (2022)
2. Biffis, E., Gozzi, F., Prosdocimi, C.: Optimal portfolio choice with path dependent labor income: the infinite horizon case. SIAM J. Control Optim. 58(4), 1906–1938 (2020)
3. Cont, R., Fournie, D.: Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259, 1043–1072 (2010)
4. Cont, R., Fournie, D.: A functional extension of the Ito formula. C. R. Math. Acad. Sci. Paris 348(1–2), 57–61 (2010)
5. Cosso, A., Gozzi, F., Rosestolato, M., Russo, F.: Path-dependent hamilton-jacobi-bellman equation: Uniqueness of crandall-lions viscosity solutions (2023) arXiv:2107.05959