An 18–28 GHz dual-mode down-converter IC for 5G applications

Author:

Naghavi Saeed,Ryynänen Kaisa,Zahra Mahwish,Korsman Aleksi,Stadius Kari,Kosunen Marko,Unnikrishnan Vishnu,Anttila Lauri,Valkama Mikko,Ryynänen Jussi

Abstract

AbstractEmerging spectrum trends require a higher integration of 5G New Radio Frequency Range 1 (FR1) and Frequency Range 2 (FR2) bands to enhance the availability of spectrum and spectrum-sharing opportunities. To enable the reception of both FR1 and FR2 bands in a seamless hardware entity, we propose combining homodyne and heterodyne architectures. This necessitates the incorporation of a down-converter module that transfers the incoming signals from FR2 bands down to FR1, ensuring compatibility with an FR1 direct-conversion receiver (DCR) for the final signal reception. The primary focus of this paper is the design and implementation of the required integrated down-converter. The module includes an integrated balun, a low-noise amplifier (LNA) with a bypass mode, a dual-mode mixer, and an intermediate frequency (IF) amplifier. The introduced bypass mode helps to further elevate the linearity performance compared to the nominal mode. The bypass mode is designed for joint communication and sensing operation to avoid the compression of the receiver. This work also incorporates a local oscillator (LO) signal distribution network with phase tuning elements using a mixed-signal approach. The circuit is implemented in a 22-nm CMOS process, and the active die area is 0.6 $$\text {mm}^\text {2}$$ mm 2 . The measurements demonstrate that the implemented chip can efficiently perform the required frequency conversion over a wide frequency range of 18–28 GHz. Conversion gain of 4.5–7.5 dB, noise figure of 15–19.7 dB, 1 dB compression point (IP1dB) of − 16 to − 10 dBm, and input third-order intercept point (IIP3) of − 5 to 0 dBm are achieved. The measured IP1 dB and IIP3 for the bypass mode are +0.5 to +4.5 dBm and +8.5 to +10 dBm, respectively.

Funder

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Hardware and Architecture,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3