Author:
Dhakad Narendra Singh,Chittora Eshika,Sharma Vishal,Vishvakarma Santosh Kumar
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Hardware and Architecture,Signal Processing
Reference29 articles.
1. Yan, B., Li, B., Qiao, X., Xue, C., Chang, M., Chen, Y., & Li, H. (2019). Resistive memory-based in-memory computing: From device and large-scale integration system perspectives. Advanced Intelligent Systems, 1, 1900068.
2. Zhang, J., Wang, Z., & Verma, N. (2017). In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE Journal Of Solid-State Circuits, 52, 915–924.
3. Si, X., Khwa, W., Chen, J., Li, J., Sun, X., Liu, R., Yu, S., Yamauchi, H., Li, Q., & Chang, M. (2019). A Dual-Split 6T SRAM-Based Computing-in-Memory Unit-Macro With Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors. IEEE Transactions On Circuits And Systems I: Regular Papers, 66, 4172–4185.
4. Gonugondla, S., Kang, M., & Shanbhag, N. (2018). A variation-tolerant in-memory machine learning classifier via on-chip training. IEEE Journal Of Solid-State Circuits, 53, 3163–3173.
5. Yin, S., Jiang, Z., Seo, J., & Seok, M. (2020). XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks. IEEE Journal Of Solid-State Circuits, 55, 1733–1743.