APMT: an automatic hardware counter-based performance modeling tool for HPC applications

Author:

Ding Nan,Lee Victor W.,Xue WeiORCID,Zheng Weimin

Abstract

AbstractThe ever-growing complexity of HPC applications and the computer architectures cost more efforts than ever to learn application behaviors. In this paper, we propose the APMT, an Automatic Performance Modeling Tool, to understand and predict performance efficiently in the regimes of interest to developers and performance analysts while outperforming many traditional techniques. In APMT, we use hardware counter-assisted profiling to identify the key kernels and non-scalable kernels and build each kernel model according to our performance modeling framework. Meantime, we also provide an optional refinement modeling framework to further understand the key performance metric, cycles-per-instruction (CPI). Our evaluations show that by only performing a few small-scale profiling, APMT is able to keep the average error rate around 15% with average performance overheads of 3% in different scenarios, including NAS parallel benchmarks, dynamical core of atmosphere model of the Community Earth System Model (CESM), and the ice component of CESM on commodity clusters. APMT improve the model prediction accuracies by 25–52% in strong scaling tests comparing to the well-known analytical model and the empirical model.

Funder

National Key R&D Program of China

Center for High Performance Computing and System Simulation of Pilot National Laboratory for Marine Science and Technology (Qingdao).

Publisher

Springer Science and Business Media LLC

Subject

Community and Home Care

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HiRM: Hierarchical resource management for earth system models on many-core clusters;CCF Transactions on High Performance Computing;2024-01-05

2. Adaptive variable sampling model for performance analysis in high cache-performance computing environments;Heliyon;2023-06

3. Conquering Noise With Hardware Counters on HPC Systems;2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3