Author:
Seibert Ruben,Andresen Louise C.,Jarosch Klaus A.,Moser Gerald,Kammann Claudia I.,Yuan Naiming,Luterbacher Jürg,Laughlin Ronnie J.,Watson Catherine J.,Erbs Martin,Müller Christoph
Abstract
AbstractIncreasing atmospheric CO2 enhances plant biomass production and may thereby change nutrient concentrations in plant tissues. The objective of this study was to identify the effect of elevated atmospheric CO2 concentrations on nutrient concentrations of grassland biomass that have been grown for 16 years (1998–2013). The grassland biomass grown at the extensively managed Giessen FACE experiment, fumigated with ambient and elevated CO2 (aCO2; eCO2; +20%) was harvested twice annually. Concentrations of C, N, P, K, Ca, Mg, Mn, Fe, Cu and Zn were determined separately for grasses, forbs and legumes. Under eCO2, the concentration of N was reduced in grasses, Ca was reduced in grasses and forbs, P was reduced in grasses but increased in legumes, Mg concentration was reduced in grasses, forbs and legumes and K was reduced in grasses but increased in forbs. The nutrient yield (in g nutrient yield of an element per m−2) of most elements indicated negative yield responses at a zero biomass response to eCO2 for grasses. K and Zn nutrient yields responded positively to eCO2 in forbs and Mn and Fe responded positively in forbs and legumes. The results suggest that under eCO2 the nutrient concentrations were not diluted by the CO2 fertilization effect. Rather, altered plant nutrient acquisitions via changed physiological mechanisms prevail for increased C assimilation under eCO2. Furthermore, other factors such as water or nutrient availability affected plant nutrient concentrations under eCO2.
Funder
LOEWE excellence cluster FACE2FACE from the Hessian State Ministry of Higher Education, Research and the Arts
Justus-Liebig-Universität Gießen
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献