Large Infaunal Bivalves Determine Community Uptake of Macroalgal Detritus and Food Web Pathways

Author:

Karlson Agnes M. L.,Pilditch Conrad A.,Probert P. Keith,Leduc Daniel,Savage Candida

Abstract

Abstract Human activities alter biodiversity, influencing bottom-up and top-down control on food webs which can affect ecosystem functioning. In marine ecosystems, large bivalves play a critical role in benthic–pelagic coupling including nutrient cycling; however, their influence on the uptake of detrital organic matter by benthic communities is less understood. In a replicated factorial field experiment, we examined how the presence or absence (overharvesting scenario) of a large suspension-feeding clam on an intertidal sandflat and the addition of isotopically enriched macroalgal (Ulva sp.) detritus (eutrophication scenario) influenced infaunal biodiversity, and how changes in trophic interactions influenced key ecosystem functions (nutrient cycling and benthic metabolism and primary production). Both clams and Ulva increased community metabolism, but only clams had an effect on nutrient regeneration. We used the 13C- and 15N-enriched Ulva to quantify the effect of clams on detritus uptake in fauna and recovery in sediment. Due to their large biomass, nitrogen incorporation by clams constituted one-third of the infaunal community uptake after 14 days. Clam uptake likely resulted from ingestion of resuspended microphytobentos which had utilized 15N leaking out from decomposing Ulva. In plots without Ulva addition, the effect of clams on the overall resource utilization by the benthic community using natural abundance isotope niche metrics were tested. In plots without clams, the isotope niche of the community was reduced, and less carbon of pelagic origin was channelled into the infaunal food web. Our results imply that the loss of clams changes trophic pathways and reduces community uptake of macroalgal detritus, potentially exacerbating eutrophication. Graphic Abstract

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3