Soil Denitrification, the Missing Piece in the Puzzle of Nitrogen Budget in Lowland Agricultural Basins

Author:

Soana ElisaORCID,Vincenzi Fabio,Colombani NicolòORCID,Mastrocicco MicòlORCID,Fano Elisa AnnaORCID,Castaldelli GiuseppeORCID

Abstract

AbstractDenitrification is a key process buffering the environmental impacts of agricultural nitrate loads but, at present, remains the least understood and poorly quantified sink in nitrogen budgets at the watershed scale. The present work deals with a comprehensive and detailed analysis of nitrogen sources and sinks in the Burana–Volano–Navigabile basin, the southernmost portion of the Po River valley (Northern Italy), an intensively cultivated (> 85% of basin surface) low-lying landscape. Agricultural census data, extensive monitoring of surface–groundwater interactions, and laboratory experiments targeting N fluxes and pools were combined to provide reliable estimates of soil denitrification at the basin scale. In the agricultural soils of the basin, nitrogen inputs exceeded outputs by nearly 40% (~ 80 kg N ha−1 year−1), but this condition of potential N excess did not translate into widespread nitrate pollution. The general scarcity of inorganic nitrogen species in groundwater and soils indicated limited leakage and storage. Multiple pieces of evidence supported that soil denitrification was the process that needed to be introduced in the budget to explain the fate of the missing nitrogen. Denitrification was likely boosted in the soils of the studied basin, prone to waterlogged conditions and consequently oxygen-limited, owing to peculiar features such as fine texture, low hydraulic conductivity, and shallow water table. The present study highlighted the substantial contribution of soil denitrification to balancing nitrogen inputs and outputs in agricultural lowland basins, a paramount ecosystem function preventing eutrophication phenomena.

Funder

Regione Emilia-Romagna

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3