Drought Timing Modulates Soil Moisture Thresholds for CO2 Fluxes and Vegetation Responses in an Experimental Alpine Grassland

Author:

Forte T’ai G. W.ORCID,Carbognani Michele,Chiari GiorgioORCID,Petraglia AlessandroORCID

Abstract

AbstractDrought timing determines the degree to which dry events impact ecosystems, with the ability of key processes to withstand change differing between drought periods. Findings indicate that drought timing effects vary across ecosystems, with few studies focusing on alpine grasslands. We conducted a mesocosm experiment using small grassland monoliths collected in September from the high Alps and left to overwinter at 0 °C until the experiment began in lowland Italy under late-winter outdoor conditions. Together with watered controls, we imposed three different drought treatments (zero precipitation): (1) one-month early-drought immediately after simulated snowmelt; (2) one-month mid-drought a month after melt-out; and (3) continuous two-month drought across the entire experimental period. Ecosystem responses were assessed by measuring CO2 fluxes, while vegetation responses were investigated by measuring aboveground net primary production (ANPP) of graminoids and forbs and post-harvest resprouting after one-month rehydration. We found that ecosystem respiration and gross ecosystem production (GEP) during the day were more negatively affected by mid-season drought compared to drought starting early in the season. By the end of treatments, GEP reduction under mid-season drought was similar to that of a continuous two-month drought. ANPP reduction was similar in early- and mid-drought treatments, showing a greater decrease under an enforced two-month period without precipitation. Plant resprouting, however, was only reduced in full- and mid-season drought pots, with forbs more negatively affected than graminoids. Seasonal soil moisture variation can account for these patterns: remaining winter moisture allowed almost full canopy development during the first month of the season, despite precipitation being withheld, while soil moisture depletion in the second month, resulting from higher temperatures and greater biomass, caused a collapse of gas exchange and diminished plant resprouting. Our data illustrates the importance of the timing of zero-precipitation periods for both plant and ecosystem responses in alpine grasslands.

Funder

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3