Impacts of Compost Amendment Type and Application Frequency on a Fire-Impacted Grassland Ecosystem

Author:

Anthony Tyler L.,Stover Holly J.,James Jeremy J.,Silver Whendee L.

Abstract

AbstractComposting organic matter can lower the global warming potential of food and agricultural waste and provide a nutrient-rich soil amendment. Compost applications generally increase net primary production (NPP) and soil water-holding capacity and may stimulate soil carbon (C) sequestration. Questions remain regarding the effects of compost nitrogen (N) concentrations and application rates on soil C and greenhouse gas dynamics. In this study, we explored the effects of compost with different initial N quality (food waste versus green waste compost) on soil greenhouse gas fluxes, aboveground biomass, and soil C and N pools in a fire-impacted annual grassland ecosystem. Composts were applied annually once, twice, or three times prior to the onset of the winter rainy season. A low-intensity fire event after the first growing season also allowed us to explore how compost-amended grasslands respond to burning events, which are expected to increase with climate change. After four growing seasons, all compost treatments significantly increased soil C pools from 9.5 ± 0.9 to 30.2 ± 0.7 Mg C ha−1 (0–40 cm) and 19.5 ± 0.9 to 40.1 ± 0.7 Mg C ha−1 (0–40 cm) relative to burned and unburned controls, respectively. Gains exceeded the compost-C applied, representing newly fixed C. The higher N food waste compost treatments yielded more cumulative soil C (5.2–10.9 Mg C ha−1) and aboveground biomass (0.19–0.66 Mg C ha−1) than the lower N green waste compost treatments, suggesting greater N inputs further increased soil stocks. The three-time green waste application increased soil C and N stocks relative to a single application of either compost. There was minimal impact on net ecosystem greenhouse gas emissions. Aboveground biomass accumulation was higher in all compost treatments relative to controls, likely due to increased water-holding capacity and N availability. Results show that higher N compost resulted in larger C gains with little offset from greenhouse gas emissions and that compost amendments may help mediate effects of low-intensity fire by increasing fertility and water-holding capacity.

Funder

Rathmann Family Foundation

California Department of Food and Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3